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Let the computer learn!:
Machine learning-based decoding
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Trained 
decoder

Decoded 
orientation

novel data

fMRI decoding of visual orientation
(Kamitani & Tong, Nat. Neurosci. 2005)
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Columns and voxels

(cf., Boynton, 2005; Rojer and Schwartz, 1990)
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Ensemble feature selectivity
(Kamitani & Tong, 2005, 2006)
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1-D simulation of columns and voxels
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Training with 
unambiguous 
stimuli (relatively 
objective)

Prediction of 
subjective states

Assumption: Stimulus-induced perception and subjective 
mentation share some neural representation.

Method of “neural mind-reading”
(Kamitani & Tong, 2005, 2006)
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Neural mind-reading of attention
(Kamitani & Tong, 2005, 2006)

Attend to Attend to 

What’s on your mind, Neo?

Trained with 
unambiguous 
single gratings

?

(c.f., Mind-reading of mental imagery: 
Stokes et al.,2009; Harrison et al., 
2009) 11
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important for accurately distinguishing between the two
experimental conditions (e.g., position A versus position B)
were then reprojected back onto the structural brain image
of the participant to produce ‘‘prediction maps.’’ Remarkably,
this process revealed large numbers of voxels in the body-
posterior of the hippocampus bilaterally that accurately
discriminated the position of the participant (Figure 3).

Discriminating between Four Positions
We next investigated whether there were voxels in the hippo-
campus capable of discriminating simultaneously between
all four target positions in a room. By using the same protocol
as above, we performed all six possible pairwise classifiers
for each room (comparing positions A versus B, A versus C,
A versus D, B versus C, B versus D, and C versus D against
each other; see Figure 1) and combined their results into error
correcting output codes fromwhich resultant predictions were
determined by computing the nearest Hamming distance to
a real label code (see Supplemental Experimental Proce-
dures). Although these four-way classifications are dependent
on a linear combination of the pairwise classifications above,
they provide distinct information about the data because
significant voxel accuracy in pairwise classification does not
necessitate significant accuracy in four-way classification.
Significant voxels were again reprojected back onto the

structural brain image of a participant to produce prediction
maps. This revealed a focal cluster of voxels in the body-
posterior of the hippocampus bilaterally, which allowed for
accurate differentiation between all four positions in a room,
again independent of visual input (Figure 4), a result that was
markedly consistent across participants. There were very
few discriminating voxels elsewhere in the MTL, thus demon-
strating the specific involvement of the hippocampus in repre-
senting spatial positions.

Discriminating between the Two Environments
Though spatial positions of the participant within the environ-
mentwere represented almost exclusively in the hippocampus,
our findings also highlighted an interesting dissociation
between the hippocampus and parahippocampal gyrus. In
a separate multivariate analysis, we tested whether it was
possible to accurately predict which environment—the blue or
green room—aparticipantwas induringnavigation.Thepredic-
tion maps obtained revealed voxels in the parahippocampal
gyrusbilaterally,whichallowed fordifferentiationbetweenenvi-
ronments (Figure5). In contrast to thepositionanalysis,minimal
numbers of voxels were found in the hippocampus that accu-
rately discriminated between the two environments.
For each classification type, we formally quantified the

differences in numbers of discriminating voxels present in the

Figure 2. Multivariate Pattern Analysis

An example multivariate analysis of a pairwise
position classification, in this case discriminating
between position A and position B in the blue
room (see Figure 1).
(A) Only volumes acquired while the participant
was standing at these two blue room positions
were entered into the analysis.
(B) Coverage for functional scanning is shown as
a white bounding box. The search space for the
searchlight algorithm [14, 24], anatomically
defined to encompass the entire hippocampus
and wider MTL bilaterally, is shown as a red
bounding box.
(C–E) The search space was stepped through
voxel by voxel (C). For each voxel vi (example
vi outlined in red), a spherical clique (radius 3 vox-
els) of N voxels c1.N was extracted with voxel vi
at its center (D) to produce an N-dimensional
pattern vector for each volume (E).
(F) Each pattern vector was labeled according to
the corresponding experimental condition (posi-
tion A versus position B) and then partitioned
into a training set (solid lines) and an independent
test set (dashed line and indented). Patterns of
activity across the voxel clique from the training
set were used to train a linear SVM classifier,
which was then used to make predictions about
the labels of the test set. A standard k-fold
crossvalidation testing regime was implemented,
ensuring that all pattern vectors were used once
as the test data set.
(G and H) This crossvalidation step, therefore,
yielded a predicted label for every pattern vector
in the analysis that was then compared to the real
labels to produce an overall prediction accuracy
for that voxel clique (G). This accuracy value
was stored with the voxel vi for later thresholding
and reprojection back into structural image
space (H). The whole procedure was then
repeated for the next voxel vi+1 (outlined in white
in [C]) along in the search space until all voxels in
the search space had been considered.
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Decoding from human hippocampus

(Hassabis et al. Curr Biol 2009)

hippocampus and parahippocampal gyrus, respectively, by
performing a difference of population proportions [33] signifi-
cance test on the two anatomically defined regions (see the
Experimental Procedures). For the pairwise and four-way posi-
tion classifications, we found that there was a significantly
higher proportion of voxels active in the hippocampus than
the parahippocampal gyrus for all participants (all p < 0.05;
see the Supplemental Results). For the environment classifica-
tion, therewas a significantly higher proportion of voxels active
in the parahippocampal gyrus than the hippocampus for all
participants (all p < 0.05; see the Supplemental Results). Note
that these significant findings alsomitigate against themultiple
comparisons problem; if active voxels were just false positives
due to chance, one would expect a uniform distribution of
active voxels (see the Supplemental Results).

Discussion

Our results demonstrate that fine-grained spatial information
can be accurately decoded solely from the pattern of fMRI
activity across spatially distributed voxels in the human hippo-
campus. This shows that the population of hippocampal
neurons representing place must necessarily be large, robust,
and nonuniform. Thus, our findings imply that, contrary to pre-
vailing theories, there may be an underlying functional organi-
zation to the hippocampal neural code. Our data also revealed
a dissociation, permitting conclusions about anatomical spec-
ificity. Whereas spatial positions were expressed in the hippo-
campus, by contrast, voxels in the parahippocampal gyrus
discriminated between the two environments.

Extending the pairwise position classification findings
(Figure 3) to discriminate between four arbitrary environmental
positions (Figure 4) revealed a region of the hippocampus that
is involved in the general storage and/or manipulation of posi-
tion representations. The involvement of neuronal populations
located specifically in the body-posterior of the hippocampus
[19] as indicated by our data is highly consistent with findings
from human and animal studies of spatial memory that use
other investigative techniques [34–36]. Therefore, we propose
that these individual abstracted position representations
aggregated together form the basis of the allocentric cognitive

map [4], or the set of invariant spatial relationships [37], repre-
senting the layout of an environment. Due to the constraint that
pattern classifiers require a certain number of consistent
examples for training purposes [13, 14], discrete localized
positions had to be used as target locations. However, there
is nothing special about the target locations used in this study;
any positions in the rooms could have been chosen. Indeed,
within each target location, a participant’s stationary position
varied subtly trial by trial, given that the target area measured
1.5m3 1.5m in size. Thus, we suggest that the spatial code for
an environment is likely to be continuous, with subtle differ-
ences in the neuronal code between adjacent positions.
The volumes acquired during an environment block while in

the blue or green room (see Figure 1D) comprised fMRI activity
from a large number of different ‘‘snapshot’’ views of a room at
numerous spatial positions within it (not only our four target
positions). Hence, we believe that the classifier operating on
hippocampal voxels did not discriminate between the two envi-
ronmentsbecause thiswould havenecessitated these voxels to
have identifiably similar patterns of activity across environment
block volumes (i.e., volumes acquired while in the blue or green
room). However, hippocampal voxels were instead acutely
tuned to individual spatial positions within a block and, there-
fore, displayed differing patterns of activity during navigation
in an environment block that encompassed numerous spatial
positions.Bycontrast, it isclear that theparahippocampalgyrus
performedadistinct but complementary function.Wespeculate
that this may have involved extracting the salient contextual
features of each environment [27, 29], such as object-in-place
associations [28] and orienting wall object configurations from
multiple visual snapshots for input to the hippocampal place
representations [30]. Thus, the classifier operating on parahip-
pocampal gyrus voxels was able to discriminate between the
two environments, although we cannot exclude the possibility
that this regionmighthavealsobeensensitive to thecolordiffer-
ences between the two environments. Further studies will be
needed to ascertain the exact nature and function of the repre-
sentations in theparahippocampal gyrusduringnavigationand,
indeed, in other neocortical areas such as the prefrontal and
parietal cortices, which are also known tobe involved in naviga-
tion [38]butwereoutsideof the scanningcoverageof this study.

Figure 3. Pairwise Position Classification

Prediction maps showing the accuracies of the
voxels at the center of searchlight cliques that
discriminate between two arbitrarily chosen
target positions in a room (apriori selected to be
A versus B and C versus D) significantly above
chance (50%). The resultant prediction map for
a participant, bounded by the search space
(indicated by the red box in Figure 2B), is pro-
jected onto their structural brain image. A sagittal
section for each participant is displayed, showing
that voxels in the body-posterior of the hippo-
campus bilaterally are crucial for accurate posi-
tion discrimination by the classifier. The findings
are highly consistent across participants. The
red bar indicates percentage accuracy values as
a fraction (significance threshold set at 66.07%
for all participants; see Tables S2 and S3 for
thresholding and comparison pair details). ‘‘R’’
and ‘‘L’’ are right and left sides of the brain,
respectively.
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painters’ works) than to the mask images. Participants
passively viewed a sequence of 16 s blocks of (i) multiple
original paintings (16 images presented); (ii) a fixation
cross; and (iii) multiple mask images. This sequence was
repeated five times for each run (a total of two runs).

Decoding session
The main fMRI session involved a 16-s stimulus block
and a 4-s response block repeated eight times per run
(four blocks for original images and four blocks for their
mask images; a total of 15 runs). In each stimulus block,
a single image (original or mask of Dali or Picasso)
was flashed at 1Hz. In the following response block,
participants used a joystick to indicate his/her guess
about the painter. The assignment of joystick move-
ments for Dali and Picasso was indicated on the display in
every block, and was randomized across blocks. A total
of 120 images (30 original images and 30 mask images
for each of Dali and Picasso) were presented in a
randomized order.

The data from the first 10 runs and the remaining five
runs were used for training and testing the decoder,
respectively. Note that an original image and its corres-
ponding mask image were presented within each of
training and test sessions.

Post-scanning questionnaire
After the fMRI experiment, we gave participants ques-
tionnaires asking whether they had seen the paintings
before the experiment. The trials involving the paintings
each participant reported he/she had seen before (art
majors, 34.2±15.3%; and non-art majors, 6.13±8.22%)
were excluded from the test data set used for the
evaluation of the decoder (results turned out to be similar
before and after the exclusion).

Functional MRI data acquisition
A 3T fMRI scanner (Signa Horizon; GE, Milwaukee,
Wisconsin, USA) was used to acquire T2*-weighted EPI
sequences (TR=2 s, TE=30ms, flip angle=701, slice
thickness= 6.0mm, slice gap=2.0mm, FOV=20 cm,
64! 64 in-plane matrix).

Voxel selection for decoding analysis
Voxels for decoding analysis were selected based on the
data measured in the functional localizer session. We
performed voxel selection because decoding accuracy is
often degraded by the presence of uninformative voxels.
We constructed a general linear model, and acquired
t values for each voxel by making a contrast of (original-
mask). The resulting t values were regarded as the
indices for voxel preference of paintings to unstructured
images. We selected 600 voxels with the highest
t values [t>2.43±0.51 (mean±SD across participants);
d.f.= 226] from the whole brain (see Figure, Supple-
mental Digital Content 1, http://links.lww.com/WNR/A17 for
the distribution of voxels). The number of voxels was
determined based on our preliminary experiments, in
which 500–600 voxels tended to lead to best perfor-
mance. This heuristic method for voxel selection by no
means guarantees an optimal solution [7], but it out-
performed other voxel selection methods in our pre-
liminary studies using similar stimuli.

Decoding analysis
Data samples for decoding analysis were created by
averaging the fMRI volumes within each 16-s stimulus
block [average of eight volumes, shifted by 4 s (= 2
volumes) to account for hemodynamic delays]. The
samples were labeled according to the painter (or the
participant’s guess). Other preprocessing steps were the
same as those described in [4].

Fig. 1

Trained with:
‘Picasso’‘Dali’

Image Voxels Image Voxels
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(a) ‘Neural art appraisal.’ A functional MRI activity pattern elicited by viewing a painting is analyzed by a statistical classifier/decoder (‘neural art
appraiser’) to make a prediction of whether the painting is created by Dali or Picasso. The decoder is trained on a separate dataset in advance.
(b) Decoding accuracy. The dashed line indicates the chance level (50%), error bars and asterisks denote standard deviations and significance
levels (difference from chance level and between the participant groups; *P<0.05; **P<0.01; ***P<0.001), respectively.
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(a) ‘Neural art appraisal.’ A functional MRI activity pattern elicited by viewing a painting is analyzed by a statistical classifier/decoder (‘neural art
appraiser’) to make a prediction of whether the painting is created by Dali or Picasso. The decoder is trained on a separate dataset in advance.
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(Yamamura, Sawahata, 
Yamamoto, Kamitani, 2009)

Neural art appraisal of painter: Dali 
or Picasso?
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In the case of 10 x 10 binary pixels

2100  =
10000000・・・ possible images

Impossible to measure brain 
activity for all possible images!
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Decoding into an image: 
Visual image reconstruction



Modular decoding approach
(Miyawaki, Uchida, Yamashita, Sato, Morito,Tanabe, Sadato, 

Kamitani, Neuron 2008) 
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Multi-scale 
Image bases

+ ++

Presented image 
(contrast)

Reconstructed image
(contrast)

fMRI signals

Reconstruction using multi-scale 
local image decoders

Local image decoders
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Training
~400 random images (~ 1 hour)

Test
Geometric shapes, alphabets, random images (not used in training)

Procedure

=
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Automatic voxel selection by local decoder 
(Yamashita, Sato, Yoshioka, Tong, Kamitani, Neuroimage 2008)

- Finds an optimal set of voxels for each image basis from the 
whole visual cortex.
- Selected voxels form a complex pattern, outperforming 
retinotopy-based prediction.

Sparse logistic regression
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視覚像再構成の結果1

Presented images
(contract)

Reconstructed images
（8 trials / image）

Mean reconstructed
images

=

Reconstruction results:
Block averaged fMRI signals (6 volumes = 12 s)
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(Miyawaki, Uchida, Yamashita, Sato, Morito,Tanabe, Sadato, Kamitani, Neuron 2008)
20
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Image identification via 
reconstruction



Encode vs. decode models

Brain
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Mind

Encode 
model

(Kay et al. Nature 2008; 
Mitchell et al. Science 2008)

Decode 
model

~

(Miyawaki et al. Neuron 2008)

Bidirectional model? 22



 

Automatic extraction of image bases: 
A Bayesian CCA model

(Fujiwara, Miyawaki, Kamitani, NIPS 2009)
23



Image bases estimated from data

(a) Estimated image bases by Bayesian CCA
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Figure 2: Image basis estimation: (a) Representative bases estimated by Bayesian CCA (left,
sorted by the number of pixels), and their frequency as a function of eccentricity (right). 3-pixel
bases (L-shape, 3x1 and 1x3) were not assumed in Miyawaki et al. [6]. Negative (dark) bases were
often associated with negative voxel weights, thus equivalent to positive bases with positive voxel
weights. (b) Examples of image bases estimated by the standard CCA.

bases and fMRI voxels. This estimation was conducted by the sparse logistic regression that as-
sumed sparsenes in the weight values, which effectively removed irrelevant voxels [8]. The proposed
method introduced sparseness priors not only for fMRI voxels but also for image pixels. These pri-
ors lead to automatic extraction of images bases, and the mappings between a small number of fMRI
voxels and a small number of image pixels. Using this model, we successfully extracted spatially
localized image bases including those not used in the previous work [6]. Using the set of image
bases, we were able to accurately reconstruct arbitrary contrast-defined visual images from fMRI
activity patterns. The sparseness priors played an important role to estimate spatially localized im-
age bases, and to improve reconstruction performance, as demonstrated by the comparison with the
results from standard CCA (Figure 2 and 3).

Our method has several limitations. First, as the latent variables were assumed to have an orthogo-
nal Gaussian distribution, it may be difficult to obtain non-orthogonal image bases, which have been
shown to provide an effective image representation in the framework of sparse coding [4,9]. Differ-
ent types of image bases could be generated by introducing non-orthogonality and/or non-lineality
in the model. The shape of estimated image bases may also depend on the visual stimuli used for
the training of the reconstruction model. Although we used random images as visual stimuli, other
types of images including natural scenes may lead to more effective image bases that allow for ac-
curate reconstruction. Finally, our method failed to estimate peripheral image bases, and as a result,
only poor reconstruction was achieved for peripheral pixels. The cortical magnification factor of the
visual cortex [5] suggests that a small number of voxels represent a large number of image pixels in
the periphery. Elaborate assumptions about the degree of sparseness depending on eccentricity may
help to improve basis estimation and image reconstruction in the periphery.
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MILES from his old lair
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Monk, 88, facing sex attack rap
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1. Brooke's got it - and flaunts it

2. Wenger: Bring on United

3. Katie caught munching kebab

4. Tottenham hottie Spurs on Jermain

5. Noirin strips off for lad's mag

By LEON WATSON

DREAMY scientists say they will come up with
new technology which shows what is on our
minds when we're ASLEEP.

The Japanese research team claims its groundbreaking
study could eventually display dreams on a computer
screen.

A team at ATR Computational Neuroscience
Laboratories said they have already succeeded in
displaying images directly from the human brain.

And even though they have only managed to
reproduce simple images, they reckon they will
eventually be used to figure out dreams and other
secrets inside people's minds.

Chief researcher Yukiyasu Kamitani said: "It was the
first time in the world that it was possible to visualise
what people see directly from the brain activity.

"By applying this technology, it may become possible
to record and replay subjective images that people
perceive like dreams."

He added that when people look at an object, the eye's
retina recognises an image. That is then converted
into electrical signals which go into the brain's visual
cortex.

But the team claim they have caught the signals and
then put together what people see.

In their experiment, the researchers showed people
the six letters in the word "neuron" and then reconstructed the letters on a computer screen by
measuring their brain activity.

The team said it first figured out people's individual brain patterns by showing them some 400
different still images.
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DREAMY scientists 
say they will come up 
with new technology 
which shows what is 
on our minds when 
we're ASLEEP.
(The Sun, 11 Dec, 2008)
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Visual cortical activation during REM 
sleep

!

fMRI activity during REM (triggered by eye movements)
(Miyauchi et al., 2008)
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福間さんの仕事の引き継ぎ

・福間さんが不在のため、急遽福間さんの仕事を引き
継ぐこととなった。

・共同研究先の新潟大学ではメッシュ!"#$を開発

%ラットにおいて&'()*と!"#$の同時記録が可能に+,

Flexible mesh ECoG array
(Collaboration with Niigata U. and U. Tokyo)

(Toda, Sawahata, Suzuki, Majima, Kamitani, Hasegawa, 2011) 



ILLUMINATING THE BRAIN

Optogenetics
Deisseroth, Stanford
Boyden, MIT

Toward brain-to-brain communication

(Buchen, 2010)
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Subject 1

“Neural coder converter”

Subject 2

Train inter-subject 
prediction model

(Kamitani et al., in prep)



#$

Subject 1 Subject 2

Trained model

Reconstruction from
predicted brain activity 

Predicted brain 
activity

Application to “Image/thought transfer”?
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Externalization of 
internal image

Image understanding via 
ordinary sensory pathway

Brain-based visual communication 
1.0
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10101110
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111

Brain-to-brain transfer by neural code 
conversion and stimulation

10001011
10111110
10110110
1010111

Brain-based visual communication 
2.0



Summary

1. Machine learning-based approach to the 
decoding
2. Primitive form of neural mind-reading
3. Subvoxel neural representation as a possible 
information source
4. Modular decoding and its application to visual 
image reconstruction
5. Neural code converter and its implication for 
brain-to-brain communication
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Codes and data available at: 
http://www.cns.atr.jp/dni/
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